Extensions 1→N→G→Q→1 with N=C2 and Q=D7×C24

Direct product G=N×Q with N=C2 and Q=D7×C24
dρLabelID
D7×C25224D7xC2^5448,1395


Non-split extensions G=N.Q with N=C2 and Q=D7×C24
extensionφ:Q→Aut NdρLabelID
C2.1(D7×C24) = D7×C23×C4central extension (φ=1)224C2.1(D7xC2^4)448,1366
C2.2(D7×C24) = C24×Dic7central extension (φ=1)448C2.2(D7xC2^4)448,1383
C2.3(D7×C24) = C23×Dic14central stem extension (φ=1)448C2.3(D7xC2^4)448,1365
C2.4(D7×C24) = C23×D28central stem extension (φ=1)224C2.4(D7xC2^4)448,1367
C2.5(D7×C24) = C22×C4○D28central stem extension (φ=1)224C2.5(D7xC2^4)448,1368
C2.6(D7×C24) = C22×D4×D7central stem extension (φ=1)112C2.6(D7xC2^4)448,1369
C2.7(D7×C24) = C22×D42D7central stem extension (φ=1)224C2.7(D7xC2^4)448,1370
C2.8(D7×C24) = C2×D46D14central stem extension (φ=1)112C2.8(D7xC2^4)448,1371
C2.9(D7×C24) = C22×Q8×D7central stem extension (φ=1)224C2.9(D7xC2^4)448,1372
C2.10(D7×C24) = C22×Q82D7central stem extension (φ=1)224C2.10(D7xC2^4)448,1373
C2.11(D7×C24) = C2×Q8.10D14central stem extension (φ=1)224C2.11(D7xC2^4)448,1374
C2.12(D7×C24) = C2×D7×C4○D4central stem extension (φ=1)112C2.12(D7xC2^4)448,1375
C2.13(D7×C24) = C2×D48D14central stem extension (φ=1)112C2.13(D7xC2^4)448,1376
C2.14(D7×C24) = C2×D4.10D14central stem extension (φ=1)224C2.14(D7xC2^4)448,1377
C2.15(D7×C24) = C14.C25central stem extension (φ=1)1124C2.15(D7xC2^4)448,1378
C2.16(D7×C24) = D7×2+ 1+4central stem extension (φ=1)568+C2.16(D7xC2^4)448,1379
C2.17(D7×C24) = D14.C24central stem extension (φ=1)1128-C2.17(D7xC2^4)448,1380
C2.18(D7×C24) = D7×2- 1+4central stem extension (φ=1)1128-C2.18(D7xC2^4)448,1381
C2.19(D7×C24) = D28.39C23central stem extension (φ=1)1128+C2.19(D7xC2^4)448,1382
C2.20(D7×C24) = C23×C7⋊D4central stem extension (φ=1)224C2.20(D7xC2^4)448,1384

׿
×
𝔽